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The performance of certain binary block codes with soft-decision decoding is evalu-

ated by simulation. A construction is proposed to introduce memory on block codes, and

simulation results are shown for a trellis code derived from the Nordstrom-Robinson

code.

I. Introduction

Recent technological advances make soft-decision decoders,

for moderate length block codes, a practical alternative to con-

volutionally coded systems. In particular, in order to improve

the performance of current concatenated coding systems used

in deep space communication, it is interesting to find the per-

formance of some block codes, which might be used as inner

codes with soft-decision decoders. Soft-decision decoding is

mandatory for inner codes to avoid a penalty of approxi-

mately 2 dB incurred by hard quantization of channel outputs.

A well-known upper bound on the word error probability

Pw of an (n, k) linear binary block code with soft-decision

decoder is given by [1]

M-1
1

P _ 2 2 erfc(x/RWmEb/No) (1)
m=l

where M = 2k, R = k/n, Ez,/N O is the bit signal-to-noise ratio,

and w m is the weight of the ruth code word. This bound is

tight for large E b/No, and the coding gain is proportional to

the product Rdmin, where dmi n is the minimum distance of

the block code.

Unfortunately, Eq. (1), which is based on the union b_

yields a very loose performance estimate at low E b/N

therefore resort to simulation techniques to find the trm

decision, maximum likelihood performance of some sel

binary block codes.

II. Soft-Decision Decoding

We assume a channel with no output quantization.

fore, each binary waveform is obtained by the op

demodulator (a matched filter followed by a sampler), i

code word is represented by a sequence of n random vari

Let E denote the energy of one of these n binary

forms. Then each binary decision variable can be writte

to an irrelevant constant, as

= _ n/E-+ n i, ifithbit = 1
r.

.-_/E-+ ni, if ith bit = 0

and i = 0, 1 ..... n - 1, where the variables ni are saml

additive white Gaussian noise (AWGN) with zero mea

variance N O/2.
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From knowledge of the M = 2 k code words, and upon

reception of the sequence ro, rl,..., rn_l, the decoder com-

putes M squared Euclidean distances

n-I

d: =
/=0

i=0,1 ..... M-1

where xij = -+1corresponds to the j th bit of the i th code word.
The decoded code word is the one corresponding to the mini-
mum distance.

III. Simulation Results for Various
Block Codes

A few rate 1/2 binary block codes are considered:

(a) The cxtcnded Golay (24, 12) code with dmin = 8.

(b) The first-order Reed-Muller (8, 4) code with dmi n = 4.

_1 _-, ,r 1 , lr-,_1_: ...... E'er "r_'_
(c) lne nonlinear (16,_ l_om_tlom-txuum_u, tl_-lxy

code [2] with dmi n = 6.

The word error probability Pw of these codes, obtained by

simulation, is shown in Fig. 1, in the range of interest for use

as inner codes. The results are also compared to the perfor-
mance of the NASA (7, 1/2) convolutional code, assuming a

t word length of 8 bits. Care must be exercised in comparing the

results, due to different word lengths.

Figure 2 shows the performance of the first-order Reed-

Muller (16, 5) code and the (7, 1/3) convolutional code with

8-bit words. Figure 3 shows a similar comparison between the

first-order Reed-Muller (32,6) code and the (14, 1/4) and
(14, 1/55 convolutional codes with 10-bit words.

The bit error probabilities of two of the codes considered in

Fig. 1, the Golay (24, 12) and the NASA (7, 1/2) codes, are

compared in Fig. 4.

In Fig. 1 it appears that the NASA (7, 1/2) code is still the

best, except at very low E b/No, and that longer block codes,
longer than those considered here, are necessary to compare

favorably. Nevertheless, the simulation of the Nordstrom-

Robinson code gave rise to a new approach.

Instead of pursuing the path of longer codes we devised

some simple methods to introduce limited memory on a block

code. Given that the Nordstrom-Robinson code is composed

of a first-order Reed-Muller (16, 5) code and 7 of its cosets

[3], we were able to construct a 4-state trellis code by pro-

perly assigning these 8 cosets to the branches of the state

Ulitgl?lIIl iil rig. 5. llllb conshuctioil, uc_cllocu dllt.l

generalized in [4], yields in this case a 4-state (16, 7) code

with free distance df = 8. Notice that even though the product

(Rdy = 3.55 for this code is lower than that for the Golay code

(Rdf = 4) and for the NASA (7, 1/25 code (Rdf = 5), the code
performs better at low Eb/No, and has lower complexity than
the Golay code. Figures 6 and 7 show simulation results for

the word error probabilities Pw and bit error probabilities Pb
respectively, for the three codes just mentioned.
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Fig. 1. Soft-decoding performance of three rate 112 block codes
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Fig. 2. Soft-decoding performance of first-order Reed-Muller
(16, 5) code
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Fig. 3. Soft-decoding performance of first-order Reed-Muller
(32, 6) code
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Fig. 5. Diagram of a 4-state trellis
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Fig. 4. Bit error probability of Golay code
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Fig, 6. The Pw of new code compared to Golay and (7, 1/2) codes
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Fig. 7. The Pb of new code compared to Golay and (7, 1/2) codes
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